B.M.S COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU – 560004 SEMESTER END EXAMINATION – SEPTEMBER-2023

UUCMS. No.

B.Sc.in Mathematics – 2nd Semester

ALGEBRA-II AND CALCULUS-II (NEP Scheme 2021-22 Onwards F+R)

Course Code: MAT2DSC02 Duration: 2¹/₂ Hours

OP Code: 2015 Max. Marks: 60

Instructions: Answer all the sections.

SECTION-A

I. Answer any SIX of the following. Each question carries TWO marks.

- 1. Define a subgroup of a group
- 2. Calculate the order of the elements in the multiplicative group of $G = \{1, -1, i, -i\}$.
- 3. Find the angle between radius vector and the tangent to the curve $r = a(1 + sin\theta)$
- 4. Find polar sub-tangent to the curve $r = a(1 + \cos\theta)$ at $\theta = \frac{\pi}{3}$
- 5. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos^4 x dx$ 6. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^4 x dx$
- 7. Evaluate $\int_0^2 \int_0^1 x^3 dx dy$
- 8. Evaluate $\int_0^1 \int_0^2 \int_0^3 (x^2 yz) dx dy dz$

SECTION-B

II. Answer any TWO of the following. Each question carries SIX marks.

1. Prove that a non-empty subset H of a group is a subgroup of G if and only if

$$a*b^{-1}\in H, \forall a,b \ \in H$$

- 2. If a is a generator of a group G, then show that O(a) = O(G).
- 3. State and prove Lagrange's theorem.

(6X2=12)

(2X6=12)

SECTION-C

III. Answer any SIX of the following. Each question carries SIX marks.

- 1. With usual notations, show that $tan\varphi = r \frac{d\theta}{dr}$
- 2. For the cardioid $r = a(1 \cos\theta)$ show that $2ap^2 = r^3$
- 3. a) Compute $\frac{dS}{dx}$ for the curve $x^2 = 4ay$
 - b) Calculate the radius of curvature for $xy = c^2$ at (x, y)
- 4. Derive reduction formula for $\int \sin^n x \, dx$ and hence evaluate $\int_0^{\frac{\pi}{2}} \sin^n x \, dx$
- 5. Evaluate i) $\int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx$ ii) $\int_0^1 x \cos^6 x dx$
- 6. Find the area included between the Cardiods $r=a(1+cos\theta)$ and $r=a(1-cos\theta)$.
- 7. Evaluate $\int xydx + yzdy + zxdz$ under the curve $x = t, y = t^2, z = t^3$ varying from -1 to +1
- 8. Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x dz dx dy$.

(6X6=36)