UUCMS. No. $\square$

# B.M.S COLLEGE FOR WOMEN, AUTONOMOUS <br> BENGALURU - 560004 <br> SEMESTER END EXAMINATION - SEPTEMBER-2023 

B.Sc.in Mathematics - $\mathbf{2}^{\text {nd }}$ Semester

ALGEBRA-II AND CALCULUS-II
(NEP Scheme 2021-22 Onwards F+R)

Course Code: MAT2DSC02
Duration: $2^{1 / 2}$ Hours

QP Code: 2015
Max. Marks: 60

Instructions: Answer all the sections.

## SECTION-A

I. Answer any SIX of the following. Each question carries TWO marks.

1. Define a subgroup of a group
2. Calculate the order of the elements in the multiplicative group of $G=\{1,-1, i,-i\}$.
3. Find the angle between radius vector and the tangent to the curve $r=a(1+\sin \theta)$
4. Find polar sub-tangent to the curve $r=a(1+\cos \theta)$ at $\theta=\frac{\pi}{3}$
5. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x$
6. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{4} x d x$
7. Evaluate $\int_{0}^{2} \int_{0}^{1} x^{3} d x d y$
8. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3}\left(x^{2} y z\right) d x d y d z$

## SECTION-B

II. Answer any TWO of the following. Each question carries SIX marks.
(2X6=12)

1. Prove that a non-empty subset H of a group is a subgroup of $G$ if and only if

$$
a * b^{-1} \in H, \forall a, b \in H
$$

2. If $a$ is a generator of a group G , then show that $O(a)=O(G)$.
3. State and prove Lagrange's theorem.

## SECTION-C

## III. Answer any SIX of the following. Each question carries SIX marks.

1. With usual notations, show that $\tan \varphi=r \frac{d \theta}{d r}$
2. For the cardioid $r=a(1-\cos \theta)$ show that $2 a^{2}=r^{3}$
3. a) Compute $\frac{d S}{d x}$ for the curve $x^{2}=4 a y$
b) Calculate the radius of curvature for $x y=c^{2}$ at $(x, y)$
4. Derive reduction formula for $\int \sin ^{n} x d x$ and hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$
5. Evaluate i) $\int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{2}}} d x \quad$ ii) $\int_{0}^{1} x \cos ^{6} x d x$
6. Find the area included between the Cardiods $r=a(1+\cos \theta)$ and $r=a(1-\cos \theta)$.
7. Evaluate $\int x y d x+y z d y+z x d z$ under the curve $x=t, y=t^{2}, z=t^{3}$ varying from -1 to +1
8. Evaluate $\int_{0}^{1} \int_{\mathrm{y}^{2}}^{1} \int_{0}^{1-\mathrm{x}} \mathrm{xdzdxdy}$.
